home *** CD-ROM | disk | FTP | other *** search
- /*
- Solving the Nearest Point-on-Curve Problem
- and
- A Bezier Curve-Based Root-Finder
- by Philip J. Schneider
- from "Graphics Gems", Academic Press, 1990
- */
-
- /* point_on_curve.c */
-
- #include <stdio.h>
- #include <malloc.h>
- #include <math.h>
- #include "GraphicsGems.h"
-
- #define TESTMODE
-
- /*
- * Forward declarations
- */
- Point2 NearestPointOnCurve();
- static int FindRoots();
- static Point2 *ConvertToBezierForm();
- static double ComputeXIntercept();
- static int ControlPolygonFlatEnough();
- static int CrossingCount();
- static Point2 Bezier();
- static Vector2 *V2Sub();
- static Vector2 V2ScaleII();
-
- int MAXDEPTH = 64; /* Maximum depth for recursion */
- #define EPSILON (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
- #define DEGREE 3 /* Cubic Bezier curve */
- #define W_DEGREE 5 /* Degree of eqn to find roots of */
-
- #ifdef TESTMODE
- /*
- * main :
- * Given a cubic Bezier curve (i.e., its control points), and some
- * arbitrary point in the plane, find the point on the curve
- * closest to that arbitrary point.
- */
- main()
- {
-
- static Point2 bezCurve[4] = { /* A cubic Bezier curve */
- { 0.0, 0.0 },
- { 1.0, 2.0 },
- { 3.0, 3.0 },
- { 4.0, 2.0 },
- };
- static Point2 arbPoint = { 3.5, 2.0 }; /*Some arbitrary point*/
- Point2 pointOnCurve; /* Nearest point on the curve */
-
- /* Find the closest point */
- pointOnCurve = NearestPointOnCurve(arbPoint, bezCurve);
- printf("pointOnCurve : (%4.4f, %4.4f)\n", pointOnCurve.x, pointOnCurve.y);
- }
- #endif /* TESTMODE */
-
-
- /*
- * NearestPointOnCurve :
- * Compute the parameter value of the point on a Bezier
- * curve segment closest to some arbtitrary, user-input point.
- * Return the point on the curve at that parameter value.
- *
- */
- Point2 NearestPointOnCurve(P, V)
- Point2 P; /* The user-supplied point */
- Point2 *V; /* Control points of cubic Bezier */
- {
- Point2 *w; /* Ctl pts for 5th-degree eqn */
- double t_candidate[W_DEGREE]; /* Possible roots */
- int n_solutions; /* Number of roots found */
- double t; /* Parameter value of closest pt*/
-
- /* Convert problem to 5th-degree Bezier form */
- w = ConvertToBezierForm(P, V);
-
- /* Find all possible roots of 5th-degree equation */
- n_solutions = FindRoots(w, W_DEGREE, t_candidate, 0);
- free((char *)w);
-
- /* Compare distances of P to all candidates, and to t=0, and t=1 */
- {
- double dist, new_dist;
- Point2 p;
- Vector2 v;
- int i;
-
-
- /* Check distance to beginning of curve, where t = 0 */
- dist = V2SquaredLength(V2Sub(&P, &V[0], &v));
- t = 0.0;
-
- /* Find distances for candidate points */
- for (i = 0; i < n_solutions; i++) {
- p = Bezier(V, DEGREE, t_candidate[i], NULL, NULL);
- new_dist = V2SquaredLength(V2Sub(&P, &p, &v));
- if (new_dist < dist) {
- dist = new_dist;
- t = t_candidate[i];
- }
- }
-
- /* Finally, look at distance to end point, where t = 1.0 */
- new_dist = V2SquaredLength(V2Sub(&P, &V[DEGREE], &v));
- if (new_dist < dist) {
- dist = new_dist;
- t = 1.0;
- }
- }
-
- /* Return the point on the curve at parameter value t */
- printf("t : %4.12f\n", t);
- return (Bezier(V, DEGREE, t, NULL, NULL));
- }
-
-
- /*
- * ConvertToBezierForm :
- * Given a point and a Bezier curve, generate a 5th-degree
- * Bezier-format equation whose solution finds the point on the
- * curve nearest the user-defined point.
- */
- static Point2 *ConvertToBezierForm(P, V)
- Point2 P; /* The point to find t for */
- Point2 *V; /* The control points */
- {
- int i, j, k, m, n, ub, lb;
- double t; /* Value of t for point P */
- int row, column; /* Table indices */
- Vector2 c[DEGREE+1]; /* V(i)'s - P */
- Vector2 d[DEGREE]; /* V(i+1) - V(i) */
- Point2 *w; /* Ctl pts of 5th-degree curve */
- double cdTable[3][4]; /* Dot product of c, d */
- static double z[3][4] = { /* Precomputed "z" for cubics */
- {1.0, 0.6, 0.3, 0.1},
- {0.4, 0.6, 0.6, 0.4},
- {0.1, 0.3, 0.6, 1.0},
- };
-
-
- /*Determine the c's -- these are vectors created by subtracting*/
- /* point P from each of the control points */
- for (i = 0; i <= DEGREE; i++) {
- V2Sub(&V[i], &P, &c[i]);
- }
- /* Determine the d's -- these are vectors created by subtracting*/
- /* each control point from the next */
- for (i = 0; i <= DEGREE - 1; i++) {
- d[i] = V2ScaleII(V2Sub(&V[i+1], &V[i], &d[i]), 3.0);
- }
-
- /* Create the c,d table -- this is a table of dot products of the */
- /* c's and d's */
- for (row = 0; row <= DEGREE - 1; row++) {
- for (column = 0; column <= DEGREE; column++) {
- cdTable[row][column] = V2Dot(&d[row], &c[column]);
- }
- }
-
- /* Now, apply the z's to the dot products, on the skew diagonal*/
- /* Also, set up the x-values, making these "points" */
- w = (Point2 *)malloc((unsigned)(W_DEGREE+1) * sizeof(Point2));
- for (i = 0; i <= W_DEGREE; i++) {
- w[i].y = 0.0;
- w[i].x = (double)(i) / W_DEGREE;
- }
-
- n = DEGREE;
- m = DEGREE-1;
- for (k = 0; k <= n + m; k++) {
- lb = MAX(0, k - m);
- ub = MIN(k, n);
- for (i = lb; i <= ub; i++) {
- j = k - i;
- w[i+j].y += cdTable[j][i] * z[j][i];
- }
- }
-
- return (w);
- }
-
-
- /*
- * FindRoots :
- * Given a 5th-degree equation in Bernstein-Bezier form, find
- * all of the roots in the interval [0, 1]. Return the number
- * of roots found.
- */
- static int FindRoots(w, degree, t, depth)
- Point2 *w; /* The control points */
- int degree; /* The degree of the polynomial */
- double *t; /* RETURN candidate t-values */
- int depth; /* The depth of the recursion */
- {
- int i;
- Point2 Left[W_DEGREE+1], /* New left and right */
- Right[W_DEGREE+1]; /* control polygons */
- int left_count, /* Solution count from */
- right_count; /* children */
- double left_t[W_DEGREE+1], /* Solutions from kids */
- right_t[W_DEGREE+1];
-
- switch (CrossingCount(w, degree)) {
- case 0 : { /* No solutions here */
- return 0;
- break;
- }
- case 1 : { /* Unique solution */
- /* Stop recursion when the tree is deep enough */
- /* if deep enough, return 1 solution at midpoint */
- if (depth >= MAXDEPTH) {
- t[0] = (w[0].x + w[W_DEGREE].x) / 2.0;
- return 1;
- }
- if (ControlPolygonFlatEnough(w, degree)) {
- t[0] = ComputeXIntercept(w, degree);
- return 1;
- }
- break;
- }
- }
-
- /* Otherwise, solve recursively after */
- /* subdividing control polygon */
- Bezier(w, degree, 0.5, Left, Right);
- left_count = FindRoots(Left, degree, left_t, depth+1);
- right_count = FindRoots(Right, degree, right_t, depth+1);
-
-
- /* Gather solutions together */
- for (i = 0; i < left_count; i++) {
- t[i] = left_t[i];
- }
- for (i = 0; i < right_count; i++) {
- t[i+left_count] = right_t[i];
- }
-
- /* Send back total number of solutions */
- return (left_count+right_count);
- }
-
-
- /*
- * CrossingCount :
- * Count the number of times a Bezier control polygon
- * crosses the 0-axis. This number is >= the number of roots.
- *
- */
- static int CrossingCount(V, degree)
- Point2 *V; /* Control pts of Bezier curve */
- int degree; /* Degreee of Bezier curve */
- {
- int i;
- int n_crossings = 0; /* Number of zero-crossings */
- int sign, old_sign; /* Sign of coefficients */
-
- sign = old_sign = SGN(V[0].y);
- for (i = 1; i <= degree; i++) {
- sign = SGN(V[i].y);
- if (sign != old_sign) n_crossings++;
- old_sign = sign;
- }
- return n_crossings;
- }
-
-
-
- /*
- * ControlPolygonFlatEnough :
- * Check if the control polygon of a Bezier curve is flat enough
- * for recursive subdivision to bottom out.
- *
- */
- static int ControlPolygonFlatEnough(V, degree)
- Point2 *V; /* Control points */
- int degree; /* Degree of polynomial */
- {
- int i; /* Index variable */
- double *distance; /* Distances from pts to line */
- double max_distance_above; /* maximum of these */
- double max_distance_below;
- double error; /* Precision of root */
- Vector2 t; /* Vector from V[0] to V[degree]*/
- double intercept_1,
- intercept_2,
- left_intercept,
- right_intercept;
- double a, b, c; /* Coefficients of implicit */
- /* eqn for line from V[0]-V[deg]*/
-
- /* Find the perpendicular distance */
- /* from each interior control point to */
- /* line connecting V[0] and V[degree] */
- distance = (double *)malloc((unsigned)(degree + 1) * sizeof(double));
- {
- double abSquared;
-
- /* Derive the implicit equation for line connecting first *'
- /* and last control points */
- a = V[0].y - V[degree].y;
- b = V[degree].x - V[0].x;
- c = V[0].x * V[degree].y - V[degree].x * V[0].y;
-
- abSquared = (a * a) + (b * b);
-
- for (i = 1; i < degree; i++) {
- /* Compute distance from each of the points to that line */
- distance[i] = a * V[i].x + b * V[i].y + c;
- if (distance[i] > 0.0) {
- distance[i] = (distance[i] * distance[i]) / abSquared;
- }
- if (distance[i] < 0.0) {
- distance[i] = -((distance[i] * distance[i]) / abSquared);
- }
- }
- }
-
-
- /* Find the largest distance */
- max_distance_above = 0.0;
- max_distance_below = 0.0;
- for (i = 1; i < degree; i++) {
- if (distance[i] < 0.0) {
- max_distance_below = MIN(max_distance_below, distance[i]);
- };
- if (distance[i] > 0.0) {
- max_distance_above = MAX(max_distance_above, distance[i]);
- }
- }
- free((char *)distance);
-
- {
- double det, dInv;
- double a1, b1, c1, a2, b2, c2;
-
- /* Implicit equation for zero line */
- a1 = 0.0;
- b1 = 1.0;
- c1 = 0.0;
-
- /* Implicit equation for "above" line */
- a2 = a;
- b2 = b;
- c2 = c + max_distance_above;
-
- det = a1 * b2 - a2 * b1;
- dInv = 1.0/det;
-
- intercept_1 = (b1 * c2 - b2 * c1) * dInv;
-
- /* Implicit equation for "below" line */
- a2 = a;
- b2 = b;
- c2 = c + max_distance_below;
-
- det = a1 * b2 - a2 * b1;
- dInv = 1.0/det;
-
- intercept_2 = (b1 * c2 - b2 * c1) * dInv;
- }
-
- /* Compute intercepts of bounding box */
- left_intercept = MIN(intercept_1, intercept_2);
- right_intercept = MAX(intercept_1, intercept_2);
-
- error = 0.5 * (right_intercept-left_intercept);
- if (error < EPSILON) {
- return 1;
- }
- else {
- return 0;
- }
- }
-
-
-
- /*
- * ComputeXIntercept :
- * Compute intersection of chord from first control point to last
- * with 0-axis.
- *
- */
- static double ComputeXIntercept(V, degree)
- Point2 *V; /* Control points */
- int degree; /* Degree of curve */
- {
- double XLK, YLK, XNM, YNM, XMK, YMK;
- double det, detInv;
- double S, T;
- double X, Y;
-
- XLK = 1.0 - 0.0;
- YLK = 0.0 - 0.0;
- XNM = V[degree].x - V[0].x;
- YNM = V[degree].y - V[0].y;
- XMK = V[0].x - 0.0;
- YMK = V[0].y - 0.0;
-
- det = XNM*YLK - YNM*XLK;
- detInv = 1.0/det;
-
- S = (XNM*YMK - YNM*XMK) * detInv;
- T = (XLK*YMK - YLK*XMK) * detInv;
-
- X = 0.0 + XLK * S;
- Y = 0.0 + YLK * S;
-
- return X;
- }
-
-
- /*
- * Bezier :
- * Evaluate a Bezier curve at a particular parameter value
- * Fill in control points for resulting sub-curves if "Left" and
- * "Right" are non-null.
- *
- */
- static Point2 Bezier(V, degree, t, Left, Right)
- int degree; /* Degree of bezier curve */
- Point2 *V; /* Control pts */
- double t; /* Parameter value */
- Point2 *Left; /* RETURN left half ctl pts */
- Point2 *Right; /* RETURN right half ctl pts */
- {
- int i, j; /* Index variables */
- Point2 Vtemp[W_DEGREE+1][W_DEGREE+1];
-
-
- /* Copy control points */
- for (j =0; j <= degree; j++) {
- Vtemp[0][j] = V[j];
- }
-
- /* Triangle computation */
- for (i = 1; i <= degree; i++) {
- for (j =0 ; j <= degree - i; j++) {
- Vtemp[i][j].x =
- (1.0 - t) * Vtemp[i-1][j].x + t * Vtemp[i-1][j+1].x;
- Vtemp[i][j].y =
- (1.0 - t) * Vtemp[i-1][j].y + t * Vtemp[i-1][j+1].y;
- }
- }
-
- if (Left != NULL) {
- for (j = 0; j <= degree; j++) {
- Left[j] = Vtemp[j][0];
- }
- }
- if (Right != NULL) {
- for (j = 0; j <= degree; j++) {
- Right[j] = Vtemp[degree-j][j];
- }
- }
-
- return (Vtemp[degree][0]);
- }
-
-
- static Vector2 *V2Sub(a, b, c)
- Vector2 *a, *b, *c;
- {
- c->x = a->x - b->x;
- c->y = a->y - b->y;
-
- return (c);
- }
-
-
- static Vector2 V2ScaleII(v, s)
- Vector2 *v;
- double s;
- {
- Vector2 result;
-
- result.x = v->x * s; result.y = v->y * s;
- return (result);
- }
-
-
-